Menoufiya University
 Faculty of Engineering
 Department of Electrical Engineering

Course: Power Electronics (1)- (ELE 616)
Date : 31/12/2016
Time : 3-Hour
Marks : 100

Post Graduate Exam (M.sc)

Answer the following questions:

Question (1)

1.1) A $230 \mathrm{~V}, 960 \mathrm{rpm}, 20 \mathrm{~A}$, separately excited dc motor has armature circuit resistance and inductance of 1.2Ω and 50 mH respectively. The motor is controlled by a single-phase half-controlled rectifier with source voltage of 230 V, 50 Hz . Calculate no load speeds, and speeds and developed torques on the boundary between continuous and discontinuous conductions for $\alpha=45^{\circ}$, and 135°. 1.2) A single- phase semi-converter is operated with an uniform PWM control and is supplied from $220 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. The load current with an average value of I_{a} is continuous with negligible ripple content. There are four pulses per half cycle, each pulse has a width $\delta=25^{\circ}$ and the pulses are started at $\alpha_{1}=10^{\circ}, \alpha_{2}=55^{\circ}, \alpha_{3}=100^{\circ}$, and $\alpha_{4}=145^{\circ}$. The modulation index $\mathrm{M}=0.8$. Calculate:
(a)The average output voltage, $V_{d c}$;
(b)The harmonic factor of input current, HF:
(c) The distortion factor, DF ;
(d)The input power factor, PF.

Question (2)

2.1) A single-phase full-wave controller supplies an RL load. The input rms voltage is $\mathrm{V}=220 \mathrm{~V}, 50 \mathrm{~Hz}$. The load is such that $\mathrm{L}=0.008 \mathrm{H}$ and $\mathrm{R}=2.513 \Omega$. The delay angles of thyristors are equal: $\alpha_{1}=\alpha_{2}=\frac{\pi}{3}$. Determine:
(a) The conduction angle of thyristor, δ;
(b) The rms output voltage, V_{o};
(c) The rms thyristor current, I_{R};
(d) The rms output current, I_{0};
(e) The average current of a thyristor, I_{A};
(f) The input power factor $P F$.
(You can use the curves of figures 1,2, and 3)
2.2) a single-phase/ single-phase cycloconverter is supplying from $220 \mathrm{~V}, 50 \mathrm{~Hz}$ source. The load resistance is 2.5Ω and load inductance is $L=20 \mathrm{mH}$. The frequency of output voltage is 20 Hz . If the delay angles are generated by comparing a cosine signal at source frequency with a sinusoidal reference signal at output frequency. Determine:
(a) The rms output voltage;
(b) The rms current of each thyristor;
(c) The input power factor $P F$.

Question (3)
(25-Mark)
3.1) Explain with aid of sketches the operation of the Buck-Boost regulator of Fig. (4), assuming continuous load current $I_{a}=I_{A}$.
3.2) The input voltage of Buck-Boost converter in Fig.(4), $\mathbf{V}_{\mathbf{s}}=12 \mathrm{~V}$. The duty cycle $\mathbf{K}=\mathbf{0} .25$ and the switching frequency is $\mathbf{2 5} \mathbf{k H z}$. The inductance, $\mathbf{L}=150 \mu H$ and filter capacitance is $\mathbf{C}_{2}=\mathbf{2 2 0} \mu F$. The energy transfer capacitance $\mathbf{C}_{1}=\mathbf{2 0 0}$ μF and inductance $\mathbf{L}_{\mathbf{1}}=\mathbf{2 0 0} \mu H$. The average load current is $\mathbf{I}_{\mathbf{a}} \mathbf{1 . 1 2 5}$ A.
Determine the :
(a) Average output voltage, V_{a};
(b)Peak-to-peak output voltage ripple ΔV_{c};
(c) Peak-to-peak ripple current of inductor Δt; and
(d) Peak current of the transistor, I_{p}.

Question (4)
(25-Mark)
A $460 \mathrm{~V}, 50 \mathrm{~Hz}, 980 \mathrm{rpm}, 6$ pole, Y-connected squirrel-cage induction motor has the following equivalent circuit parameters per phase referred to the stator: $\mathrm{R}_{\mathrm{s}}=0.29 \Omega, \mathrm{X}_{\mathrm{s}}=0.21 \Omega, \mathrm{X}_{\mathrm{m}}=13.3 \Omega, \mathrm{R}_{\mathrm{r}}^{\prime}=0.145 \Omega, \mathrm{X}_{\mathrm{r}}^{\prime}=0.5 \Omega$.
The motor is supplied from a current source inverter. The flux is maintained at the rated value. Calculate:

1. The stator current and de link current when the machine operates at rated torque and 50 Hz .
2. The inverter frequency and dc link current for a speed of $\mathbf{6 0 0} \mathbf{~ r p m}$ and rated torque.
3. The motor speed, stator current, and dc link current for half of the rated torque and inverter frequency of $\mathbf{3 0 ~ H z}$.

Figure (1) Relation between firing angle(α) and extinction angle (β) for various angle ϕ (load angle).

Figure (2) Normalized rms value of the thyristor current ($I_{R N}$) versus firing angle (α) for various load angle (ϕ).

Figure (3) Normalized value of the average thyristor current $\left(I_{N}\right)$ versus firing angle (α) for various load angle (ϕ).

Figure (4) Buck-Boost regulator.

Good Luck
Prof.Dr. Sabry Abdellatif Mahmoud

